Search results for "Quasisymmetric mapping"

showing 3 items of 3 documents

Uniformization with infinitesimally metric measures

2019

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

Characterization (mathematics)Space (mathematics)conformal modulus01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsComplex Variables (math.CV)MathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsquasiconformal mappingMetric Geometry (math.MG)metriset avaruudetmetric doubling measureMetric spaceDifferential geometryUniformization theoremMetric (mathematics)quasisymmetric mapping30L10 (Primary) 30C65 28A75 51F99 (Secondary)mittateoria010307 mathematical physicsGeometry and TopologyUniformization (set theory)
researchProduct

Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings

2011

Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.

Mathematics(all)Quasiconformal mappingPure mathematicsGeneral MathematicsGrand Besov spaceMetric measure spaceTriebel–Lizorkin spaceCharacterization (mathematics)Space (mathematics)Triebel–Lizorkin space01 natural sciencesMeasure (mathematics)Quasisymmetric mappingMorphism0101 mathematicsBesov spaceHajłasz–Besov spaceMathematicsPointwiseta111010102 general mathematicsGrand Triebel–Lizorkin spaceQuasiconformal mappingHajłasz–Triebel–Lizorkin space010101 applied mathematicsBesov spaceFractional Hajłasz gradientAdvances in Mathematics
researchProduct

Lectures on quasiconformal and quasisymmetric mappings

2009

quasiconformal mappingskvasikonforminen kartoitusquasisymmetric mappingskvasisymmetrinen kartoitus
researchProduct